Two-stage flexible-choice problems under uncertainty
نویسندگان
چکیده
A significant input-data uncertainty is often present in practical situations. One approach to coping with this uncertainty is to describe the uncertainty with scenarios. A scenario represents a potential realization of the important parameters of the problem. In this paper we apply a recent approach, called flexibility, to solving two-stage flexible-choice problems. The first stage represents the present, where a decision maker must plan ahead to make a decision to hedge against uncertainty in the second stage, which represents the uncertain future, and is described as a set of scenarios. When one of the future scenarios is realized, a decision maker is willing to pay some recourse cost to augment the earlier solution to be more suitable for the realized scenario. Since all of the future scenarios are known, it is reasonable to presume that their desired solutions are also known. Thus, the aim of a decision maker is to find a solution in the present that is as easy as possible to adapt to solutions in the future. In this paper we study the problem where feasible solutions of the first stage are all p-element subsets of some finite set, and the solutions of the second stage are fixed p-element subsets. We present computational complexity results and algorithms for two versions of the two-stage flexible-choice problem. We formally define both problems, i.e., the sum-flexibility problem and the max-flexibility problem. For the sum-flexibility problem we describe an exact polynomial-time algorithm for the 3-scenario version, and we show non-approximability for the 4-scenario version. Preprint submitted to Elsevier 25 March 2009 For the max-flexibility problem we show that the 3-scenario version is NP-hard, but approximable within a constant performance guarantee. Additionally, we prove non-approximability for the 4-scenario version of the problem.
منابع مشابه
MULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY
The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...
متن کاملA new solving approach for fuzzy flexible programming problem in uncertainty conditions
Modeling and solving real world problems is one of the most important issues in optimization problems. In this paper, we present an approach to solve Fuzzy Interval Flexible Linear Programming (FIFLP) problems that simultaneously have the interval ambiguity in the matrix of coefficients .In the first step, using the interval problem solving techniques; we transform the fuzzy interval flexible p...
متن کاملMinimizing the Number of Tardy Jobs in the Single Machine Scheduling Problem under Bimodal Flexible and Periodic Availability Constraints
In single machine scheduling problems with availability constraints, machines are not available for one or more periods of time. In this paper, we consider a single machine scheduling problem with flexible and periodic availability constraints. In this problem, the maximum continuous working time for each machine increases in a stepwise manner with two different values allowed. Also, the durati...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملJoint optimization of pricing and capacity allocation for two competitive airlines under demand uncertainty
Nowadays, airline industries should overcome different barriers regarding the fierce competition and changing consumer behavior. Thus, they attempt to focus on joint decision making which enables them to set pricing and capacity allocation to maximize their profits. In this research, we develop a model to optimize pricing and capacity allocation in a duopoly of single-flight leg for two competi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 201 شماره
صفحات -
تاریخ انتشار 2010